Computing sets of graded attribute implications with witnessed non-redundancy
نویسنده
چکیده
In this paper we extend our previous results on sets of graded attribute implications with witnessed non-redundancy. We assume finite residuated lattices as structures of truth degrees and use arbitrary idempotent truth-stressing linguistic hedges as parameters which influence the semantics of graded attribute implications. In this setting, we introduce algorithm which transforms any set of graded attribute implications into an equivalent non-redundant set of graded attribute implications with saturated consequents whose non-redundancy is witnessed by antecedents of the formulas. As a consequence, we solve the open problem regarding the existence of general systems of pseudo-intents which appear in formal concept analysis of object-attribute data with graded attributes and linguistic hedges. Furthermore, we show a polynomial-time procedure for determining bases given by general systems of pseudo-intents from sets of graded attribute implications which are complete in data.
منابع مشابه
On sets of graded attribute implications with witnessed non-redundancy
We study properties of particular non-redundant sets of if-then rules describing dependencies between graded attributes. We introduce notions of saturation and witnessed non-redundancy of sets of graded attribute implications are show that bases of graded attribute implications given by systems of pseudo-intents correspond to non-redundant sets of graded attribute implications with saturated co...
متن کاملOn minimal sets of graded attribute implications
We explore the structure of non-redundant and minimal sets consisting of graded if-then rules. The rules serve as graded attribute implications in object-attribute incidence data and as similarity-based functional dependencies in a similarity-based generalization of the relational model of data. Based on our observations, we derive a polynomial-time algorithm which transforms a given finite set...
متن کاملBasic Algorithm for Attribute Implications and Functional Dependencies in Graded Setting
We present GLinClosure, a graded extension of the well-known LinClosure algorithm. GLinClosure can be used to compute degrees of semantic entailment from sets of fuzzy attribute implications. It can also be used together with graded extension of Ganter’s NextClosure algorithm to compute non-redundant bases of data tables with fuzzy attributes. We present foundations, the algorithm, analysis of ...
متن کاملGraded LinClosure⋆
We present graded extension of the algorithm LinClosure. Graded LinClosure can be used to compute degrees of semantic entailment from sets of fuzzy attribute implications. It can also be used together with graded extension of Ganter’s NextClosure algorithm to compute non-redundant bases of data tables with fuzzy attributes. We present foundations, algorithm, preliminary analysis of its complexi...
متن کاملFuzzy Attribute Implications: Computing Non-redundant Bases Using Maximal Independent Sets
This note describes a method for computation of non-redundant bases of attribute implications from data tables with fuzzy attributes. Attribute implications are formulas describing particular dependencies of attributes in data. A non-redundant basis is a minimal set of attribute implications such that each attribute implication which is true in a given data (semantically) follows from the basis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 351 شماره
صفحات -
تاریخ انتشار 2016